
Indian Statistical Institute, Bangalore

CS1 – Final Exam, 2014-15 (Backpaper)

Total Marks: 100

1. (10) Write a function that finds primes from 2 to L (assumes L >= 2) using the following
method:

Let p0=2; m=0; /* 2 is the first prime. */
for each number n in {3 .. L }:
 If n is divisible by any of the numbers from p0 .. pm, then
 n is not prime.
 Else n is prime, therefore,
 set pm+1=n, m=m+1.

It takes two parameters: the limit L and an array p in which the function stores the list of
primes found. It returns the number of primes found from 2 to L.

2. (5x3=15) Consider the following function f :

 f(0)=1
 f(1)=1
 f(n)=f(n-1)+f(n-2) if n>1

a. Write a recursive C function: int rfib(int n); that implements the above
definition of f.

b. Once rfib(4) is called, list the ordered sequence of invocations of the function
rfib mentioning the parameter values.

c. Write a function int lfib(int n); that also computes the same function,
except that it does so with a loop and no recursion. It simply keeps track of the last two
values of f to compute the next value.

3. (3x3+6=15) Assume you are given a linked list of structures of the following kind:
struct student {
 int id;
 struct student * next;
};
Write each of these functions:

a. struct student * findMinAfter(struct student *p); Given a pointer
p to a structure, it looks at all the structures strictly after the structure pointed to by
p in the list and returns a pointer to the node previous to the one among them with
minimum value of id. For example if we have 0->2 ->9->14->6->19 in the list and if we
are given a pointer to node with 2, the function would return a pointer to the node with
id 14 since 6 is the minimum to the right of 2.

b. struct student *removeStudentAfter(struct student *p); so that
it removes the structure immediately after the one pointed to by p from the list, and
returns a pointer to that removed structure.

c. void inserStudentAfter(struct student *p, struct student *q);
so that it inserts the structure pointed to by q immediately after p in the linked list
pointed to by p.

d. void sortStudentListAfter(struct student * head); so that if it is
called as sortStudentList(head), where head points to the first structure in
the linked list; then after the call returns, the structures in the linked list after the item
pointed to by head are sorted by id. Use the idea from the Selection Sort method. Use
the above three functions to do this.

4. (2x3+9=15) This question is about Binary Search.
a. What assumption does binary search make about elements of the array that is being

searched?
b. Binary search is more complicated to program than simple sequential search, yet it is

often used; Why?
c. Does Binary search work for a linked list? Why or why not?
d. Write a recursive function to implement binary search for an array a with n integers

searching for an element x. It returns the position where it found x; if x is not in a
then it returns -1.

5. (5+5=10) Assume struct student is defined as in question 3 above. Consider the following
functions:
struct student * foo(struct student * h, int n){
 if (h == NULL)
 return NULL;
 if (h-> id == n)
 return h;
 return foo(h->next, n);
}
struct student * goo(struct student * h, struct student * m){
 if (h == NULL)
 return m;
 h->next=goo(h->next,m);
 return h;
}

If h is a pointer to the linked list:: (h->5->7->3->2->6->4->9->8, where the values are the ids),
n is the integer:: 3 and m is a pointer to a newly malloc-ed and initialized structure (with
id set to 3), say what these two calls do and what they return):

a. foo(h,n)
b. goo(h,m)

6. (15) Write the function
 void sortIndices(int a[], int n, int d[]);
The function takes in an array a of n different integers and constructs the array d called
the sorted index array to a. Elements in d are a permutation of the numbers 0..n-1 and
they represent positions in the array a. When the function returns, the elements of d are
arranged so that: a[d[0]] < a[d[1]] < a[d[2]] < .. < a[d[n-1]]. For
example if n=4 and a is given as: 20,4,5,2 then after the function returns, d would
contain: 3,1,2,0 ie a[3], a[1], a[2], a[0] is in sorted order.
Your function should not move the elements of a. You should use bubble sort.
Hint: Use bubble sort on d instead of a; with one change - to compare two items of d, use the
values of the corresponding items of a instead.

7. (10) Write a function named transpose that takes two parameters – a two dimensional
array A and a value n indicating that it stores an n x n matrix. The function transposes the
matrix, i.e., A is replaced by AT. It has no return value. Assume there are no more than 20
columns in a row for A.

8. (10) For each of the following mention True or False:
a. The a.out file produced by the compiler is text that is human readable.
b. The .h file used in include statements is text that is human readable.
c. The .h file contains source code of functions commonly used.
d. We link libraries with our program (eg use –lm to link the math library when using

gcc), these libraries contain source code of functions.
e. In the for loop with a pattern: for(e1 ; e2 ; e3) { … } , e2 can be an

assignment expression.
f. In the for loop with a pattern: for(e1 ; e2 ; e3) { … } , e1 is executed

only once.
g. In the while loop: while(1){ … } , the body of the while loop is executed only

one time.
h. Assume n is a positive integer, then the while loop: while(n--) printf(“%d\n”,n);

prints the numbers from n down to 1.
i. Assume n is 10 , then the loop: while(n) { if(n%7) break; else continue; n--;} ,

the loop will terminate with n having value 7.
j. The following code prints “0123”: char *s=”0123”; while(*s){ printf(“%c”,*s); s++; }

